1.1 Konsep Himpunan
Konsep himpunan merupakan konsep dasar dalam matematika.
Definisi :
Himpunan adalah koleksi obyek yang didefinisikan secara jelas dalam sembarang urutan.
Cara mengoleksi obyek-obyek dapat
didasarkan pada sifat mereka yang sama atau berdasarkan suatu aturan
tertentu. Obyek-obyek yang menjadi anggota dari himpunan ini disebut
dengan elemen dari himpunan tersebut. Jika p anggota himpunan A, ditulis
pÎA, dibaca ‘p adalah elemen (anggota) dari himpunan A’. Jika obyek q bukan anggota dari himpunan A, ditulis qÏA.
1.2 Notasi dan Definisi
Himpunan dinyatakan dengan huruf besar : A, B, C,…, sedangkan elemen-elemennya dinyatakan dengan huruf kecil : a, b, c, …..
Contoh :
- Himpunan A terdiri atas bilangan 1,3,5,7, maka dapat dituliskan sebagai A = {1,3,5,7}
- Himpunan B adalah himpunan bilangan genap positif, maka dapat dituliskan dalam bentuk : B = {xïx genap >0}
Terdapat tiga cara penulisan himpunan yaitu :
- Dengan mendaftar anggota-anggotanya .
Contoh :
X = {2, 3, 5, 7, 11}
Y = {a, b, c, d}
2. Dengan menyatakan sifat-sifat yang dipenuhi oleh anggota-anggotanya
X = Himpunan 5 bilangan prima yang pertama}
Y = Himpunan 4 abjad huruf kecil yang pertama}
3. Dengan menggunakan notasi pembentuk himpunan.
X = {x½0< x < 13, x Î bilangan prima}
Y = {x½x Î 4 abjad huruf kecil yang pertama}
Definsi-Definisi pada teori himpunan :a. Himpunan Semeseta
Himpunan semesta adalah himpunan yang anggotanya semua obyek yang sedang dibicarakan, dinotasikan dengan S atau U.
Contoh :
- Semesta pembicaraan dari himpunan A = {a,b,c,d} dan B={c,d,e,f} adalah S = himpunan huruf-huruf kecil.
- Semesta pembicaraan dari himpunan A = {2,5,7} adalah S = {1,3,5,7,9}
Himpunan kosong adalah himpunan yang tidak mempunyai anggota yang dinotasikan dengan { } atau f.
Contoh :
A = {x½x2=-1, xÎbilangan asli}, maka P = {}
c. Himpunan kuasa (Power Set)
Himpunan kuasa adalah himpunan seluruh himpunan bagian dari suatu himpunan.
Contoh :
Himpunan bagian dari himpunan A = {1,2,3} adalah { },{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.
Banyaknya himpunan bagian dari dari suatu himpunan yang beranggotakan n anggota adalah 2n himpunan bagian.
d. Himpunan Berhingga (finite) dan Himpunan Tak Berhingga (infinite)
Himpunan berhingga adalah suatu himpunan yang elemennya berbeda yang banyaknya tertentu.
Himpunan tak berhingga adalah suatu himpunan yang elemennya berbeda yang banyaknya tidak tertentu.
Contoh :
P = himpunan bilangan prima, maka infinite
Q = himpunan bilangan prima kurang dari 10, maka Q finite.
1.3 Operasi-operasi Himpunana. Union (Gabungan) Himpunan
Union himpunan A dan himpunan B adalah
himpunan dari semua elemen yang termasuk dalam A atau B atau keduanya
yang dinyatakan dengan simbol Ù.
Pernyataan tersebut dapat ditulis sebagai berikut :
A Ù B ={xεA atau xεB}.
Contoh :
A = {a,b,c,d} dan B={c,d,e,f}, maka A Ù B = {a,b,c,d,e,f}
b. Interseksi (Irisan) Himpunan
Interseksi himpunan A dan himpunan B
adalah himpunan dari elemen-elemen yang termasuk dalam himpunan A maupun
B, yang dinyatakan dengan simbol ∩.
Pernyataan tersebut dapat ditulis sebagai berikut :
A ∩ B ={x elemen A dan x elemenB}.
Contoh :
A = {a,b,c,d} dan B={c,d,e,f}, maka A ∩ B = {c,d}
c. Selisih Himpunan
Selisih himpunan A dan himpunan B adalah
himpunan dari elemen-elemen yang termasuk A tetapi tidak termasuk B,
dinyatakan dengan :
A – B = {x elemen A dan x bukan elemenB}.
Contoh :A = {a,b,c,d} dan B={c,d,e,f}, maka A – B = {a,b}
d. Jumlah Himpunan
Jumlah himpunan A dan himpunan B adalah
himpunan dari elemen-elemen yang termasuk A atau B tetapi tidak termasuk
keduanya, dinyatakan dengan :
A + B = { x elemen A, x elemen b dan x bukan elemen A ∩ B}.
Contoh :
A = {a,b,c,d} dan B={c,d,e,f}, maka A + B = {a,b,e,f}
e. Komplemen Himpunan
Komplemen dari himpunan A adalah himpunan
dari elemen-elemen yang tidak termasuk A tetapi masih dalam semesta
pembicaraanS. Secaramatematis ditulis
Pernyataan tersebut dapat ditulis sebagai berikut :
A’ = { x elemen S dan x bukan elemen A}
Contoh :
A = {b,c,d} dan S={a,b,c,d,e,f}, maka A’ = {a,e,f}
f. Himpunan Bagian
Himpunan A disebut himpunan bagian dari himpunan B jika setiap anggota A juga merupakan anggota B, ditulis A C B.
Contoh :
A = {b,c,d} dan B={a,b,c,d,e,f}, maka A C B
g. Himpunan Sama
Himpunan A disebut sama dengan himpunan B jika A Ì B dan B Ì A.
Contoh :
A = {b,c,d} dan B={b,c,d}, maka A = B
sumber: http://wawanlaksito.wordpress.com/2011/05/20/teori-himpunan/
No comments:
Post a Comment